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Abstract: The authors present an algorithm for order reduction of linear dynamic SISO discrete systems using the 

combined advantages of the improved generalised Least squares method and error minimization by Differential 

Evolution technique (DE). The denominator of the reduced order model is obtained by improved generalise least 

squares method and the numerator coefficients are determined by minimizing the integral square error between the 

transient responses of original and reduced order models using DE technique, pertaining to unit step input. The 

reduction procedure is simple, efficient and computer oriented. The algorithm is illustrated with the help of two 

numerical examples to highlight the advantages of the approach and the results are compared with the other existing 

techniques.  
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I. INTRODUCTION 

Mathematical modelling of most physical systems is 

carried out using theoretical considerations. This 

modelling procedure leads to high order state space model 

in time domain or state space representation and a high 

order transfer function model in frequency domain 

representation . It is often desirable  to represent such 

models by equivalent lower order state variable or transfer 

function models  for control and other purposes. Several 

methods [1]-[5] have been proposed for solving the model 

approximation problem and they may be grouped into two 

major categories, the performance-oriented and the non 

performance-oriented approaches. In using a model 

approximation method that is not performance-oriented, 

the original system model is first transformed into a 

canonical form.For a performance oriented one , 

approximate models are obtained by minimizing certain 

approximation error criteria  , such as H
2
 – norm [10] . 

Differential evolution (DE) is a simple evolutionary 

algorithm [11] that mutates vectors by adding weighted, 

random differentials to them. The choice of differential 

evolution algorithm for numerical optimization is based on 

its useful features [12]-[13] . 

 

II. DESCRIPTION OF PROBLEM 

Consider an nth  order linear time invariant discrete system 

represented by 

Gn z =
N z 

D z 
=

A0 + A1z + …… +An−1zn−1

B0 + B1z + …….+Bn−1zn−1 + Bnzn
 

                                     =  
 A i zin−1

i=0

 B j zjn
j=0

                    ....  (1) 

Apply linear transformation z = 1 + p  to  Gn z , then 

 

               Gn p =
N p 

D p 

=
a0 + a1p + …………. +an−1pn−1 + anpn

b0 + b1p + ………..+bn−1pn−1 + bn pn
 

 

The objective is to find an rth  order model that has a 

transfer function r < n :   

R p =
Nr p 

Dr p 
=

c0 + c1p + ……+cr−1pr−1

d0 + d1p + ……+dr−1pr−1 + pr
 

                         =  
 ci pir−1

i=0

 dj pjr
j=0

                                  

 

Apply inverse linear transformation  p = z − 1 to R(p), 

then 

R z =
Nr z 

Dr z 
=

C0 + C1z + ……+Cr−1zr−1 + Crzr

D0 + D1z + ……+Dr−1zr−1 + Drzr
 

  =
 C i zir

i=0

 D jzjr
j=0

                                             ...... (2) 

 

Where 

Ai 0 ≤ i ≤ n − 1 ; Bj 0 ≤ j ≤ n  &  Ci 0 ≤ i ≤ r ; 

 Dj 0 ≤ j ≤ r  are scalar constants.  

 

The derivation of successful reduced model R(s) for the 

original higher order model Gn s  is done by minimizing 

the error index „E‟, known as ISE, employing Generalized 

Least Squares method for denominator and Differential 

Evolution Algorithm for numerator and is given by: 

                   E =  [Gn t − R t ]2dt  
∞

0
           ........(3) 
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Where Gn(t) and R(t) are the unit step response of 

original and reduced order systems. 

 

III. DIFFERENTIAL EVOLUTION 

A. OVERVIEW 

Let f(x) be a function of 𝑛-parameter vector 

               𝑥=[𝑥1, 𝑥2… 𝑥n]
T
                                       (4) 

Determine the values of the parameter vector within the 

intervals 

               𝑥k ∈ (𝑥k
-
, 𝑥k

+
) , 𝑘=1,2,…,n                        (5) 

which minimize the cost function f(x). 

 

Differential evolution (DE) is a simple evolutionary 

algorithm for parameter optimization [9]. The most 

distinct feature of DE is that it mutates vectors by adding 

weighted, random vector differentials to them. Usually, 

the performance of a DE algorithm depends on three 

variables: the population size Np, the mutation scaling 

factor  Fs, and the crossover rate Cr. In applying a DE 

algorithm to solve the above parameter optimization 

problem, it starts by generating a population of 𝑁p real 

valued 𝑛-dimensional vectors whose initial parameter 

values being chosen at random from within bounds set by 

the user. This population undergoes evolution in a form of 

natural selection. In every generation, each vector in the 

population becomes a target vector .Each target vector 

crossovers with a donor vector, which is generated by 

mutating a randomly-selected population vector with the 

difference between two randomly-selected population 

vectors, in order to produce a trial vector. If the cost of the 

trial vector is less than that of the target, the target is 

replaced by the trial vector in the next generation. 

 

B. POPULATION INITIALIZATION 

The DE algorithm is started with generating a population 

of 𝑁p real-valued 𝑛-dimensional vectors 

𝑥j= [𝑥j, 1, 𝑥j, 2… 𝑥j, n]
T
 , j=1,2,…Np                               (6) 

 

whose initial parameter values are chosen at random from 

within user-defined bounds 

𝑥j,k ∈ [𝑥k, 𝑥k] , k=1,2,…,n                                          (7) 

 

It is noted that the search region or interval [𝑥k, 𝑥k] set by 

a user for the parameter 𝑥k may be smaller than, but 

within, the allowable interval (𝑥k
-
, 𝑥k

+
) in the case 𝑥k

-
=-∞  

of and/or 𝑥k
+
=∞. Once the initial population is generated, 

the cost of each population vector is evaluated and stored 

for future reference. 

 

C. MUTATION 

 Mutation is an operation that adds a vector differential to 

a population vector. In the DE algorithm, a population 

vector 𝑥∝ is mutated into 𝑧=[𝑧1,𝑧2,…𝑧n]
T
 by adding to 𝑥∝ 

the weighted difference of two randomly selected but 

different population vectors 𝑥𝛽  and 𝑥𝛾  , i.e., 

           𝑧=𝑥∝+Fs*(𝑥𝛽 + 𝑥𝛾 )                                        ...... (8) 

 

where Fs is a scaling factor in the interval (0,2). In the 

event that mutation causes a parameter 𝑧k to shift outside 

the allowable interval (𝑥k
-
, 𝑥k

+
)  then 𝑧k is set to 𝑥k

-
  if 

𝑧k< 𝑥k
-
 , and 𝑥k

+
 
 
if  𝑧k> 𝑥k

+
. The mutated vector 𝑧 will be 

used as a donor vector for producing a trial vector. 

 

It is noted the mutation scheme (8) makes the DE a local 

optimizer because the vector differentials generated by a 

converging population eventually become infinitesimal. 

 

D. CROSSOVER 

Crossover is used to generate a trial vector by replacing 

certain parameters of the target vector by the 

corresponding parameters of a randomly generated donor 

vector. The crossover rate Cr determines when a parameter 

should be replaced. The process of producing a trial vector 

𝑥t=(𝑥t,1,…𝑥t,n)
T
 from the target vector  𝑥=(𝑥1,…𝑥n)

T 
and 

the donor vector 𝑧 is begin with generating a set of 𝑛 

random numbers  𝑟1 , 𝑟2 , … 𝑟𝑛    which are distributed 

uniformly in the interval (0,1). Next, a set of non uniform 

binary sequence 𝑏1,𝑏2…𝑏n is generated by letting 

      𝑏i=  
1  𝑖𝑓 𝑟𝑖 ≤ 𝐶𝑟

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       𝑖 =1,2,…𝑛           

 

Then each element 𝑥t,k of the trial vector 𝑥t is taken as 

 𝑥t,k=  
𝑥𝑘    𝑓𝑜𝑟 𝑏𝑘 = 1
𝑧𝑘    𝑓𝑜𝑟  𝑏𝑘 = 0

                                                     (9) 

 

Once the trial vector has been determined, its cost is 

evaluated and compared with that of the corresponding 

target vector. The target vector will be replaced by it in the 

next generation if its cost is larger than that of the trial 

vector.  
 

E. SEARCH-SPACE EXPANSION SCHEME 

In the case that the initial search region is set excessively 

large, the convergence of DE search may become very 

slow and is prone to get trapped in a local optimum. On 

the other hand, if the initial search region is set too small, 

it may fail to locate the true optimum, though the mutation 

formula with a proper scaling factor 𝐹s allows the DE 

algorithm to locate the minimum that lies outside the 

initial search region.  
 

Hence, in the absence of the exact knowledge about the 

proper and finite interval within which the true optimum 

parameter locates, it is desired to allow the DE algorithm 

to expand the search space dynamically. Toward this end, 

we incorporate in the DE algorithm a search space 

expansion scheme. The implementation of this scheme for 

the cases of negative allowable lower bound 𝑥k<0 and 

positive allowable upper bound 𝑥k>0 is described as 

follows.  
 

At the end of every 𝑁c generations of population 

evolution, we examine each parameter in the vector 𝑥*
 that 

has the lowest cost. If the current upper bound 𝑥k of the 𝑘-

th parameter 𝑥k
*
 is positive and 𝑥k≥ 𝑥k

*
>𝑥k/2 , then the 

upper bound 𝑥k get doubled. In the case where is still 

greater than the doubled upper bound, the upper bound 𝑥k 

is set to 𝛾𝑥k
*
 , where 𝛾 > 1 is a user-set expansion factor. 

The selection of the search-space expansion factor 

𝛾 depends on the size of the initial search space. Usually, 

it is set to 2 for a small initial search space and 1.2 for a 

large initial search space.  
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TABLE 1: VALUES OF THE DE ALGORITHM 

VARIABLES USED IN EXAMPLES 1 AND 2 

Parameters Values 

Population Size , NP 

Maximum number of Generations , Ni 

Search – space checking period , NC 

Search – space expansion factor , γ 

Crossover constant , Cr 

Mutation scaling factor , Fs 

60 

400 

10 

1.2 

0.6 

1.2 
 

In the event that any parameter search interval has been 

expanded, 𝑁P population vectors are generated from the 

expanded portion of search space and their costs are 

evaluated.  
 

A new initial population of 𝑁P population vectors is then 

formed by picking up the better population vectors among 

the 𝑁P evolved population vectors and the 𝑁P newly 

generated population vectors. Then this new initial 

population evolves with the expanded search space. 
 

F. SELECTION 

The cost of each trial vector 𝑥𝑡  is compared with that of its 

parent target vector  𝑥𝑖  . If the cost of the target vector 𝑥𝑖   

is lower than that of the trial vector, the target is allowed 

to advance to the next generation.  

 

Otherwise, the target vector is replaced by the trial vector 

in the next generation. 

 

Differential Evolution Algorithm 

1) Choose population size 𝑁p, mutation scaling factor 𝐹s, 

search-space checking period 𝑁c, space expansion 

factor  𝛾, and the maximum number of iterations  𝑁i . 

2) Specify the initial search intervals [𝑥k, 𝑥k] , 𝑘=1,2,…𝑛 

. 

3) Generate randomly 𝑁p,vectors 𝑥j, from the specified 

search space X=  𝑥: 𝑥𝑘 ∈ [𝑥𝑘 , 𝑥𝑘 ]  , 𝑘=1,2,…𝑛 and 

evaluate their costs 𝐶j, 𝑗=1,2…𝑁p. 

4) Initialize the iteration index I=1 . 

5) Set the initial target index 𝑗=1 . 

6) Choose at random three different integers 𝛼,𝛽 and 𝛾 

from the set { 𝑗=1,2…𝑁p} 

7) Mutate the vector 𝑥∝  to 𝑧=𝑥∝ + 𝐹s*(𝑥𝛽 − 𝑥𝛾). 

8) Generate a non uniform binary Z-sequence 

b={b1,b2,…bn}. 

9) Obtain the trial vector 𝑥𝑡  from the mutated vector Z 

and the target vector 𝑥𝑗  using crossover scheme (9). 

10) Evaluate the cost of the trial vector 𝑥𝑡   and denote it 

by 𝐶t . If 𝐶t> 𝐶j then 𝑥𝑗
𝑛𝑒𝑤 = 𝑥𝑗   and  𝑐𝑗

𝑛𝑒𝑤 = 𝑐𝑗    , 

otherwise  𝑥𝑗
𝑛𝑒𝑤 = 𝑥𝑡    and  𝑐𝑗

𝑛𝑒𝑤 = 𝑐𝑡     

11) Increment the target index 𝑗 by 1. If 𝑗 < 𝑁𝑝  then go to 

Step 6. 

12) Do the replacement 𝑥𝑗 = 𝑥𝑗
𝑛𝑒𝑤  and 𝑐𝑗 = 𝑐𝑗

𝑛𝑒𝑤   for 

𝑗=1,2…𝑁p . 

13) If 𝑖 is a multiple of 𝑁𝑐  , then execute the search-space 

expansion scheme. 

14) Increment the iteration index I by 1. If I <𝑁𝑖  , then go 

to Step 5.  

15) Stop. 

III.  ORDER REDUCTION BY GENERALISED 

LEAST-SQUARES METHOD  

 Here, the model reduction by generalized least-squares 

method suggested in [11] is discussed in brief  

 

Consider the n
th

 order system transfer function, given by : 

𝐺𝑛 𝑠  =
𝑏0+𝑏1𝑠+⋯+𝑏𝑛−1𝑠

𝑛−1

𝑎0+𝑎1𝑠+⋯+𝑎𝑛−1𝑠
𝑛−1+𝑎𝑛 𝑠𝑛

                   (10) 

 

For a reduced r
th

 order model of 𝐺𝑛 𝑠  in (1), given by : 

𝐺𝑟 𝑠 =
𝑑0+𝑑1𝑠+⋯+𝑑𝑟−1𝑠

𝑟−1

𝑒0 +𝑒1𝑠+⋯+𝑒𝑟−1𝑠
𝑟−1+𝑠𝑟

                                 (11) 

 

which retains (r + t) time moments and (r − t) Markov 

parameters (0 ≤ t ≤ r) the coefficients  ek , dk in (2) are 

derived from following set of equations : 

𝑑0= 𝑒0𝑐0 

𝑑1 = 𝑒1𝑐0 + 𝑒0𝑐1 

⋮       ⋮       ⋮                 (12) 

𝑑𝑟−1 = 𝑒𝑟−1𝑐0 + ⋯⋯ + 𝑒0𝑐𝑟−1 

0 = 𝑒𝑟−1𝑐1 + ⋯⋯ + 𝑒1𝑐𝑟−1 + 𝑒0𝑐𝑟                           

0 = 𝑒𝑟−1𝑐2 + ⋯⋯ + 𝑒1𝑐𝑟 + 𝑒0𝑐𝑟+1 

⋮      ⋮       ⋮ 
0 = 𝑒𝑟−1𝑐𝑡 + ⋯⋯ + 𝑒1𝑐𝑟+𝑡−2 + 𝑒0𝑐𝑟+𝑡−1 

 

and 

 𝑑𝑟−1 = 𝑚1 

 𝑑𝑟−2 = 𝑚1𝑒𝑟−1 + 𝑚2                                                      

(13) 

⋮            ⋮                ⋮ 
𝑑𝑡 = 𝑚1𝑒𝑡+1 + 𝑚2𝑒𝑡+2 + ⋯ + 𝑚𝑟−𝑡                                          

 

where, the 𝑐i  and mj are the time moment proportionals 

and Markov parameters of the system, respectively. 

Elimination of the d j ( j = t, t +1, ...,     r −1) in (13) by 

substituting into (12) gives the reduced denominator 

coefficients as the solution of :      

                (14) 

Or , H e = m in matrix vector form. 
 

If the denominator given by e in (14) is unstable, or has a 

singularity, then the next Markov parameter  mr-t+1  can be 

assumed to be matched by extending (13) with the 

equation : 
 

𝑑t-1 =m1et+2+m2et+1+….+mr-t+1                                        (15) 

This in effect adds another row to the H matrix and the m 

vector in (14), given by :              

[ct-1 ct-2…c0  –m1  –m2…-mr-t] and [mr-t+1], 

respectively. Calculation of e from this non square system 

of equations can only be done in the least- squares sense, 

i.e. :  
 

e = (H
T
 H)

−1
 H

T
 m                                                         (16) 

If the denominator polynomial is still not adequate, then 

the H matrix and the m vector may again be extended by 
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assuming a matching of the next Markov parameter in the 

sequence and (16) is solved for the new estimate of e. 

 

IV.  ILLUSTRATIVE EXAMPLES 

Example 1: Consider an Eighth order system transfer 

function 

 
 

Apply linear transformation  , z = p+1 

 
 

Denominator by generalized least square method: 

No. of time moments=3 

t[0]=1.001601,t[1]=0.001603,t[2]=-6.958732 

No. of markov parameters=1 

m[1]=0.4209 

 

The second order reduced denominator using generalized 

least square method in p-domain is 

D(p) = p
2
+0.419997p+0.144031 

 

Numerator by DE technique: 

No. of iterations=100 

Swarm size=50 

pl=0.1, pu=2 

 

The second order reduced numerator using differential 

evolution technique in p domain is  

N(p)=0.387715p+0.126863 

The proposed second order reduced model obtained is 

R(p)=
0.387715 𝑝+0.126863

𝑝2+0.419997𝑝+0.144031
 ( ISE=0.013664) 

 

Apply inverse linear transformation , p=z-1 

R(z)= 
0.387715 𝑧−0.260852

𝑧2−1.580003 𝑧+0.724034
 

 
Fig. 1(a) Comparison of step responses of 𝐺(𝑧) and 𝑅 𝑧  

 
Fig. 1(b) Comparison of step responses of 𝐺(𝑧) and 𝑅 𝑧  

with  other reduction techniques 

 

Example 2: Consider an fifth order system transfer 

function 

G(z)=
3.75𝑧5−13.0875𝑧4+17.80313𝑧3−11.7156𝑧2+3.688103 𝑧

−0.4358109
𝑧6−4.25𝑧5+7.3625𝑧4−6.626875 𝑧3+3.250838 𝑧2

−0.8181562 𝑧+0.0817593

 

 

Apply linear transformation ,z=p+1 

G(p)=
3.75𝑝5+5.6625𝑝4+2.953131𝑝3+0.668732 𝑝2+0.06617𝑝

+0.002262
𝑝6+1.75𝑝5+1.1125𝑝4+0.323126 𝑝3+0.045216 𝑝2

+0.002896 𝑝+0.000066

 

 

Denominator by generalized least square method: No. of 

Time moments = 4 

t[0]=34.272728, t[1]=-501.269989, t[2]=8647.485352, 

t[3]=-159075.3125 
 

No. of Markov parameters = 0 

The second order reduced denominator using generalized 

least square method in p-domain  is 
 

D(p)=p
2
+0.225215p+0.009092 

Numerator by DE technique: 

No. of iterations = 120 

Swarm size = 100 

pl = 0.009092 , pu = 3.017862 
 

The second order reduced numerator using differential 

evolution technique in p-domain is 

N(p)=3.017862p+0.306552 
 

The proposed second order reduced model obtained is 

R(p)=  
3.017862 𝑝+0.306552

𝑝+0.225215 𝑝+0.009092
  ( ISE=0.608587) 

Apply inverse linear transformation, p= z-1 

R(z)=  
3.017862 𝑧−2.71131

𝑧2−1.774785 𝑧+0.783877
 

 
Fig. 2(a) Comparison of step responses of 𝐺(𝑧) and 𝑅 𝑧  
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Fig. 2(b) Comparison of step responses of 𝐺(𝑧) and 𝑅 𝑧  

with   ther reduction techniques 

 

IV. CONCLUSION 

The authors proposed a mixed algorithm for reducing the 

order of linear dynamic SISO systems. In this algorithm, 

the concept of order reduction by generalized least squares 

method has been improved and employed to determine the 

coefficients of reduced denominator while the coefficients 

of reduced numerator are obtained by minimizing the 

integral square error between the transient response of 

original and reduced models using DE technique 

pertaining to unit step input. The algorithm is implemented 

in C-language. The matching of the unit step response is 

assured reasonably well in the algorithm. The algorithm is 

simple and computer oriented. A comparison of step 

responses for the proposed reduction algorithm and the 

other well known existing order reduction technique is 

shown from which it is clear that the proposed algorithm 

compares well with the other techniques of model order 

reduction.   
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